Clinical mutations in the L1 neural cell adhesion molecule affect cell-surface expression.
نویسندگان
چکیده
Mutations in the L1 neural cell adhesion molecule, a transmembrane glycoprotein, cause a spectrum of congenital neurological syndromes, ranging from hydrocephalus to mental retardation. Many of these mutations are single amino acid changes that are distributed throughout the various domains of the protein. Defective herpes simplex virus vectors were used to express L1 protein with the clinical missense mutations R184Q and D598N in the Ig2 and Ig6 extracellular domains, respectively, and S1194L in the cytoplasmic domain. All three mutant proteins were expressed at similar levels in infected cells. Neurite outgrowth of cerebellar granule cells was stimulated on astrocytes expressing wild-type or S1194L L1, whereas those expressing R184Q and D598N L1 failed to increase neurite length. Live cell immunofluorescent staining of L1 demonstrated that most defective vector-infected cells did not express R184Q or D598N L1 on their cell surface. This greatly diminished cell-surface expression occurred in astrocytes, neurons, and non-neural cells. In contrast to wild-type or S1194L L1, the R184Q and D598N L1 proteins had altered apparent molecular weights and remained completely endoglycosidase H (endoH)-sensitive, suggesting incomplete post-translational processing. We propose that some missense mutations in human L1 impede correct protein trafficking, with functional consequences independent of protein activity. This provides a rationale for how expressed, full-length proteins with single amino acid changes could cause clinical phenotypes similar in severity to knock-out mutants.
منابع مشابه
Radiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells
Background: Radiation-induced molecular changes on the endothelial surface of brain arteriovenous malformations (AVM) may be used as markers for specific vascular targeting agents. In this study, we examined the level of expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) on brain endothelial cell surface after radiation treatment, with the aim of targeting the radiation-induc...
متن کاملPathological missense mutations of neural cell adhesion molecule L1 affect homophilic and heterophilic binding activities.
Mutations in the gene for neural cell adhesion molecule L1 (L1CAM) result in a debilitating X-linked congenital disorder of brain development. At the neuronal cell surface L1 may interact with a variety of different molecules including itself and two other CAMs of the immunoglobulin superfamily, axonin-1 and F11. However, whether all of these interactions are relevant to normal or abnormal deve...
متن کاملThe effect of bone marrow-derived mesenchymal stem cells to induce PD-L1 molecule on splenic lymphocytes
Background: Mesenchymal stem cells are non-hematopoietic stromal cells that are used in the treatment of many chronic and autoimmune diseases by modulating the immune system. Due to the limitations of using autologous mesenchymal stem cells, the use of allogeneic stem cells is a promising therapeutic approach in the treatment of immunological disorders. This study aimed to investigate the abili...
متن کاملPathogenic human L1-CAM mutations reduce the adhesion-dependent activation of EGFR.
L1-cell adhesion molecule (L1-CAM) belongs to a functionally conserved group of neural cell adhesion molecules that are implicated in many aspects of nervous system development. In many neuronal cells the adhesive function of L1-type CAMs induces cellular signaling processes that involves the activation of neuronal tyrosine protein kinases and among other functions regulates axonal growth and g...
متن کاملNeural cell recognition molecule L1: relating biological complexity to human disease mutations.
Human single gene disorders that affect the nervous system provide a host of natural mutations that can be deployed in the quest to understand its development and function. A paradigm for this approach is the study of disorders caused by mutations in the gene for the neural cell recognition molecule L1. L1 is the founder member of a subfamily of cell adhesion molecules that are primarily expres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 15 شماره
صفحات -
تاریخ انتشار 2000